
 Abstract 

This paper describes a framework which enables to 
develop an adaptive image stabilization mechanism 
for robotic agents (RAs) with moving eyes. In 
analogy with solutions found in natural systems, our 
RA exploits two sensory systems (inertial and visual) 
to capture movement of the head in three-
dimensional space. While the RA interacts with the 
environment, a neural network (NN) learns to 
transform the movement related sensory signals into 
compensatory motor commands to stabilize gaze. 
The system achieves satisfactory stabilization 
performance through an unsupervised, visually 
driven learning scheme. Two experiments show 
stabilization performance measured directly on the 
image plane. The adaptive properties of the 
stabilization mechanism are discussed in relation to 
the external world (i.e. the environment) and to the 
available computational resources of the artificial 
system. 

1. Introduction 
In animal species with moving eyes, image stabilization is 
obtained efficiently through reflex compensatory 
movements (Wilson and Melvill Jones, 1988). Intriguingly 
enough, in many cases the reflex eye movements are already 
present in the early period of the life. Also in neonates, the 
VOR stabilization reflex is clearly present (Finocchio DV et 
al.  1991). In this early period of their life, infants rely 
predominantly on “pure vestibular” reflex (e.g. VOR gain is 
on the average 1.0) which reduces reliance on a poorly 
developed optokinetic and smooth pursuit system. The 
presence of an early stabilization reflex is thought to 
contribute to the infant’s early visual processing 
development. On the contrary, in the adulthood, the 
maturation of the latter two systems helps the VOR provide 
perfect ocular stabilization and leads to a reduction of the 
average VOR gain (e.g. gain reduces to about 0.59). 
Although the development of VOR and its interaction with 

the developing optokinetic and smooth pursuit eye 
movements are not completely understood (Shupert, 1988) 
it is clear that important changes take place over time, 
adapting the dynamic characteristics of this stabilization 
mechanism (Weissman, 1989), (Ornitz, 1985). The brain 
system responsible for this stabilization mechanism is the 
vestibulo-ocular reflex circuitry (VOR). One remarkable 
aspect of such circuitry is its plasticity: it adapts/reacts to 
any change which degrades image stabilization 
performance. Whatever the change, an error signal is 
created which informs the brain that the VOR is not 
working properly. As a result the system recalibrates itself. 
The recalibration can occur over the course of hours to days 
and at the end of it, the newly calibrated system has stored a 
new set of "stabilization parameters". It has been demonstr 
ated that VOR recalibrates when it is inaccurate and images 
move across the retina during head turns (Miles and Fuller, 
1974). This type of motor learning has been studied from 
different perspectives and model of the learning process and 
sites of learning have been proposed (Lisberger, 1988). The 
neural region that seems responsible for these kind of 
recalibration is the cerebellum (Lisberger, 1998). The gain 
of the VOR reflex is nominally 1.0 and it is kept close to 
this value by a parametric-adaptive control system 
(Shelhamer et al.  1992).  

 
In robotics, image stabilization techniques exploiting 

compensatory camera movements have received little 
attention so far (Panerai and Sandini, 1998), (Panerai et al.  
2000), (Shibata and Schaal, 1999). For a decade a growing 
number of studies have concentrated on active control of 
camera movements (Aloimonos et al.  1988), (Krotkov, 
1989), (Ballard and Brown, 1992), (Sharkey et al.  1993), 
(Capurro et al.  1997), (Nordlund and Uhlin, 1995), 
(Rougeaux, 1999) and sophisticated binocular machines 
have been successfully implemented (Uhlin et al.  1995), 
(Murray et al.  1995). On the other hand, although robust 
performance has certainly been obtained when the RAs play 
as static observers in “structured” environment, the 
performance in many cases is completely disrupted when 
operating in “disturbed”, non-structured conditions. When 
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interaction with the environment becomes an important 
issue for the RA, it is worth addressing the question on how 
visual performance might be kept unchanged in presence of 
external sources of disturbances. Either these being simply 
produced by navigating through a rough terrain, or 
otherwise due to self generated movements, what could 
possibly be the solution to avoid the degradation of robot’s 
visual functionalities? In previous work we have shown that 
an oculomotor control architecture integrating inertial and 
visual sensory information avoids degradation of visual 
performance when external motion/disturbances occur 
(Panerai and Sandini, 1998), (Panerai et al.  2000).  

 
In this work we propose a solution which enables a RA to 

develop autonomously adaptive image stabilization 
functionalities. A Growing Neural Gas (GNG) network 
receives as inputs two motion related cues (i.e. the 
vestibular information and the retinal motion information) 
and adjusts its parameters to generate optimal stabilization 
motor commands. The result of the adaptive learning 
scheme is the construction of a sensory-motor map which 
codes the compensatory stabilization reflexes. The only 
basic assumptions made at the beginning of the learning 
process are that the RA should be able to compute some 
form of retinal slip and have access to the inertial 
information.  

 
In section 2 the variables chosen to control ocular 

movements are described. Section 3 treats of the network 
model and the learning paradigm. Section 4 focuses on the 
advantages of visuo-inertial stabilization for developping 
robotic agents and finally, section 5 shows the performance 
results in image stabilization obtained with this approach. 

2. Oculomotor control for image 
stabilization 

The movement of a camera in three-dimensional space 
produces an optic flow (Sundareswaran, 1991) that under 
simplified hypotheses (i.e. center of the image plane, motion 
limited to one rotational and one translational components) 
can be written as: 
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where 

xT  represent the translation along the fronto parallel 

image plane, 
yW the rotation around a vertical axis, 

xf  the 

focal length and )0,0(Z  the distance to the fixation point. By 

substituting the term 
yW  with the sum of the head velocity 

yΩ and the eye velocity with respect to head 
yw  we have: 
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Eq. (2) tells us that the 

yΩ and 
0u variables, if directly 

measurable by the RA, are the most indicated to learn to 
generate compensatory eye movement 

yw  for image 

stabilization purposes. We have then envisaged the use of 
these two variables as independent inputs of a neural 
network which learns to approximate a control surface 
representative of the optimal compensatory command 

yw  

(optimal in the sense it minimizes the residual optic flow in 
the image plane). 

3. The neural network model 
The neural network architecture is built on a GNG-Soft 
model (Metta, 1999). It combines two network models, 
namely, the Growing Neural Gas (GNG) model and 
SoftMax function network. The resulting hybrid architecture 
has several advantages. First, the effectiveness, typical of 
the GNG, in distributing the units within the multi-
dimensional input space. Second, the “optimal” 
approximation and interpolation properties of SoftMax 
functions networks. Third, an interesting (with relation to 
our task) self-tuning capability. Structurally, the network 
consists of a single layer of processing elements (PEs), each 
characterized by a receptive field-like structure. The single 
PE’s response can be described analytically by the 
following expression: 
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Figure 1: The experimental setup. Top: the robot system is a 
5 DOF binocular head integrating an artificial vestibular 
system (i.e. the white bloc in the centre of the picture). 
Bottom: a block diagram of the NN, its inputs (optic flow, 
head velocity) and output (eye velocity).  



where G( ) is a Gaussian function, Nℜ∈ξ  is the input to 

the network and ci the receptive field positions. The output 
of the network is the linear combination of a number of PEs. 

Analytically we have: 
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where i extends to the number of units mapping the input 

space and the parameters vi are the weights of the output 
layer ( ℜ∈)ξg( ). The network parameters which will be 

tuned during the unsupervised learning process are: ci, (the 
function’s centers), vi (the weights of the output layer), 

iσ  ( 

the standard deviation of each Gaussian functions). The 
learning process consists of incrementally adjusting these 
parameters to improve/reduce a predefined “performance 
index” over time. 

3.1 Learning principle and learning 
scheme 

In our framework the input space of the network is two-
dimensional. It is defined by the instantaneous angular 
velocity of the head (i.e. 

yΩ ) and by the instantaneous optic 

flow (i.e. 
0u ) measured on each camera image plane. To 

adjust the network parameters, we have chosen a 
performance index measuring the instantaneous component 
of the residual optic flow (ROF) at the center of the image 
plane (

0u ). The tuning of the network parameters has the 

goal of minimizing the ROF on the image plane, that is: 
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Self-normalizing Hebbian rules are used to modify the 

PEs centers ci, the weights vi of the output layer according to 
the following: 
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A heuristic criterion is used in order to tune the Gaussian’s 

variances 
iσ . A description of this can be found elsewhere 

(Metta, 1999). On the other hand, in order to carry out the 
minimization, the weights of the output layers are modified 
as follows: 
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that is the target output is shifted by the quantity u0 from 

the current network output. Whenever, stabilization is 
perfect (i.e. u0=0), no adjustment is necessary and in fact 

0≈∆ iν . It is worth stressing that time, which is not 

explicitly indicated in equation (6), plays a fundamental role 
in this schema. In fact, the optic flow used as input to the 
network is actually one time step before of that used as 
stabilization measure. That is, the measure of the network 
performance can be obtained only one step after the network 
has been used to generate a motion command. A delay line 
in Figure 2  indicates this last point. 
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Figure 2 Motor learning scheme. The inertial information 
(angular sensor) and the retinal slip (optic flow) are combined 
by the NN. The teaching signal is the optic flow itself, which 
has to be minimized for stabilization to be effective. 

 

4. The “visuo-inertial” approach and 
the available computational 
resources 

In biological systems, from a developmental point of view, 
one of the advantages obtained by integrating visual and 
inertial information, is that of adapting to the available 
computational resources at a given time. In the introduction 
we have mentioned the example of neonates, which posses 
in their early age a pre-developed pure vestibular reflex 
(Finocchio DV et al.  1991). In fact, during this time the 
brain circuitry devoted to processing visual information is 
not yet efficient. The OKN and the smooth-pursuit systems 
in particular are poorly functional. On the other hand, 
because of the developmental issues, coordination between 
eye movements and visual processing is of paramount 
importance in this period (think for example to the 
development of binocular visual processing) (Held et al.  
1996). For a developing system, it is therefore reasonable to 
approach a partial and temporary solution consisting of a 
hard-wired stabilization reflex which helps to stabilize the 
visual world and at the same time facilitates retinal 
correspondence between the two eyes. Inspired by this idea, 
we performed two experiments in which the NN learns to 
generate the stabilization reflex exploiting different amount 
of inertial and visual information. The same exact form of 
interaction with the environment is engaged in the two cases 
(a sequence  of fixed amplitudes and random amplitudes 
movements). In the first case, the parameters of the NN are 
initialized to mimic a sort of unmature (i.e. pure vestibular) 
reflex. In such condition, the learning scheme described in 



section 3.1 leads the NN to develop the sensory motor map 
depicted in Figure 3. In the second experiment, the NN’s 
parameters are initialized to assign the RA a more “mature” 
(i.e. visuo-inertial) stabilization reflex. This assumption 
leads to the development of the sensory motor map depicted 
in Figure 4.  

The comparison of the two maps shows appreciable 
differences in terms of the input domain and the shape of the 
control surfaces. In Figure 3, for example, the domain of the 
ROF is limited to the (-0.1, 0.1) interval. On the contrary, 
the domain extends to a larger interval (-0.6, 0.6) in Figure 
4. Note also that the distribution of the NN’s units is 
different in the two cases: it is condensed in the centre in the 
“pure vestibular” case, while it spreads toward the 
boundaries of the ROF domain in the “visuo-inertial” case. 
Indeed, from the RA’s point of view, the first case (i.e. the 
reflex being predominantly vestibular) represents a less 
demanding requirement in terms of visual motion 
processing. On the other hand, the second case, requires the 
RA to dedicate more processing to image motion analysis 
since performance in this case strongly depends on the ROF 
measurements. 

The two experiments highlight the interesting property of 
the NN “visuo-inertial” stabilization approach which well 
adapts to the amount of computational resources available in 
the RA at a given time. Note that in a RA computational 
resources are always limited. More importantly, they should 
be appropriately distributed in order to be sufficient to 

process the different type of sensory information (visual and 
inertial) for real-time interaction with the environment. 
Therefore a straight hard-wired initial solution, although sub 
optimal, might be advantageous for the RA to solve the 
problem of image stabilization in the context of a 
developmental framework. The “smoothness” of the control 
surface is also worth it considering. In the two cases it is 
different: In the second experiment in particular, the degree 
of smoothness of the sensory motor map is much more 
evident than in the first case (although both surfaces are 
optimal in terms of the ROF criterion specified in the 
learning scheme). Therefore, if one of the RA’s concern is 
to minimize “energy consumption” during compensatory 
ocular movements, the former solution is, once again, only 
sub optimal. 
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Figure 4 – Sensory motor map of the “visuo-
vestibular” reflex. Top: the input domain of the neural 
network (flow, inertial) and the network units (small 
circles) distribution. Bottom: the control surface 
interpolated by the network units. 

In our view, time-varying learning schemes might 
represent an interesting approach to be investigated within 
the context of developmental robotics, always having in 
mind that priority for a RA should be devoted to getting “up 
and running” in the shortest time.  

5. Stabilization performance 
The stabilization mechanism enables the RA to 

generate correct compensatory eye movements from the 
very beginning. In Figure 5 the compensatory behavior is 
described during an initial and advanced phase of learning. 
In the two plots, the following measurements are 
represented: the external rotational stimulation as measured 
by the inertial sensor, and the motor command synthesized 
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Figure 3 –Sensory motor map of the “pure vestibular” 
reflex. Top: the input domain of the neural network 
(flow, inertial) and the network units (small circles) 
distribution. Bottom: the control surface interpolated by 
the network units. 



by the learning network. Not e how the motor command 
increases consistently its amplitude during the first 900 
cycles of learning. During the advanced phase of  learning 
(shown in Figure 5, bottom) the motor response still grows, 
but at a slower rate. Within our framework, learning has 
been performed using different stimuli, changing  the 
amplitude and the frequency of the externally imposed 
movement. Random stimulation have also been used to 
simulate a persistent external disturbance. In all cases 
convergence toward a stable behavior have been achieved. 

 
Direct measurements on the image plane is of paramount 

importance if one wishes to evaluate the impact of external 
disturbances on the visual functionalities of the system. 
Therefore, stabilization performance has been evaluated by 
means of optic flow techniques through first order estimates 
(see (Capurro et al.  1997) for the algorithm). In all 
performance measurements, the same sensory motor map is 
used to generate the compensatory camera movements. 
Figure 6 shows on a normalized scale the inertial 
measurement (i.e. the angular velocity) and the image slip 
(

0u component of the optic flow) corresponding to two 

different external motions (stimuli characteristics are 
respectively 0.3 Hz, 18 deg/s amplitude and 0.6 Hz, 81 
deg/s amplitude). We have evaluated numerically the 
amount of ROF. In correspondence to the maximum peak 
velocity of each stimulus, the ROF is less than 1 

pixel/frame. It is worth noting that, with the second 
stimulus, the frequency and the amplitude of the external 
movement change substantially (i.e. frequency roughly 
doubles and amplitudes increases four times approximately), 
but the amount of retinal slip is still very limited. 

6. Conclusion 
 

We have described a framework for the development of 
oculomotor stabilization reflexes in vision-based active 
robotic agents (RAs). Sensory information about the RA’s 
self-motion are obtained using an artificial vestibular 
apparatus and a basic motion detection algorithm. The 
motion cues are integrated by means of an efficient neural 
controller and used to generate compensatory camera 
movements. An unsupervised learning scheme enables the 
RA to build a sensory motor map which transforms self 
motion signals into compensatory motor commands. The 
learning scheme is efficient in adapting the network 
parameters and becomes effective after a short training 
period. Interesting enough, different initialisation of the 
neural controller enable to describe emerging property of 
the “visuo-inertial” stabilization approach: adaptation to the 
available computational resources. This is true for artificial 
as well as natural systems. Two experiments prove that 
stabilization is indeed achieved using this approach.  
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Figure 6 – Residual optic flow (ROF) during 
stabilization. Top: a normalized scale of the ROF 
measured (norm. fact. 5 pixels/frame) and the angular 
velocity component of the external movement (max 90 
deg/s). For a rotational movement of about 80 deg/s, ROF 
is bounded to less than 1 pixel/frame. Bottom: ROF is 
bounded here to 0.5 pixel/frame (0.1*5 pixels/frame) for 
a rotational movement of 18 deg/s. 

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

1 101 201 301 401 501 601 701 801 901
Time steps [40ms]

Inertial sensor Motor command

 

-0,8
-0,6
-0,4
-0,2

0
0,2
0,4
0,6
0,8

1 101 201 301 401 501 601 701 801
Time steps [40ms]

Inertial sensor Motor command

 

Figure 5 – Initial and advanced phase of the motor 
learning An external source produces a repetitive 
rotational movement whose amplitude increases in time. 
The NN the two motion signals and generates a 
compensatory command to minimize retinal slip. The 
trajectories shows the inertial sensor and the 
compensatory command (normalized). Time is expressed 
as control cycles (40ms). Top: during the initial phase the 
motor command steadily increases showing that the 
compensatory reflex is not effective yet. Bottom: in the 
advanced phase compensatory motor response is still 
growing, even if at a slower rate. 
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