d' interpretation

The response criterion d' is the normalized distance from the midpoint between the two distribution means. After normalization, the distributions means correspond to $d'/2$ and $-d'/2$ respectively.

\[d' = \frac{\mu_{SN} - \mu_N}{\sigma} = \frac{\mu_{SN} - \mu_N}{\sigma} \]

and the response criteria c is separated by $-z_H$ and $-z_{FA}$ from these means. Therefore

\[c = \frac{-d'/2 - z_{FA}}{2} = \frac{-d'/2 - z_{FA}}{2} \]

\[c = \frac{d'/2 - z_H}{2} = \frac{d'/2 - z_H}{2} \]

\[c = \frac{d'/2 - z_{FA}}{2} = \frac{d'/2 - z_{FA}}{2} \]

c interpretation

The response criterion c is the normalized distance from the midpoint between the two distribution means.

\[c = \frac{-z_H + z_{FA}}{2} = \frac{-z_H + z_{FA}}{2} \]

After normalization, the distributions means correspond to $d'/2$ and $-d'/2$ respectively.

\[c = \frac{\mu_{SN} + \mu_N}{2} = \frac{\mu_{SN} + \mu_N}{2} \]

and the response criteria c is separated by $-z_H$ and $-z_{FA}$ from these means. Therefore

\[c = \frac{-d'/2 - z_{FA}}{2} = \frac{-d'/2 - z_{FA}}{2} \]

\[c = \frac{d'/2 - z_H}{2} = \frac{d'/2 - z_H}{2} \]